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Abstract—We study the localization problem in sparse 3D
underwater sensor networks. Considering the fact that depth
information is typically available for underwater sensors, we
transform the 3D underwater positioning problem into its two-
dimensional counterpart via a projection technique and prove
that a non-degenerative projection preserves network localiz-
ability. We further prove that given a network and a constant
k, all of the geometric k-lateration localization methods are
equivalent. Based on these results, we design a purely distributed
localization framework termed USP. This framework can be
applied with any ranging method proposed for 2D terrestrial
sensor networks. Through theoretical analysis and extensive
simulation, we show that USP preserves the localizability of
the original 3D network via a simple projection and improves
localization capabilities when bilateration is employed. USP has
low storage and computation requirements, and predictable and
balanced communication overhead.

Index Terms—3D underwater localization, acoustic sensor
networks, network localization problem, localizability.

I. INTRODUCTION

Underwater sensor networks (USNs) consist of a variable
number of sensors designed to collaboratively monitor an
oceanic environment. To achieve this objective, sensors self-
organize into an autonomous network that can adapt to the
characteristics of a given underwater area. The main motiva-
tions for USNs are their relative ease of deployment and lower
costs, as they eliminate the need for underwater cabling and
do not interfere with shipping activities.

USNs’ unique properties have necessitated an innovative re-
examination of problems related to localization [1]. Indeed,
propagation delays, motion-induced Doppler shift, limited
bandwidth, and multipath interference render many previously
proposed solutions inaccurate or infeasible [2]. For example,
commonly employed RSS-based localization techniques pro-
vide ambiguous results in underwater environments [3]. In
addition, even the well-established Global Positioning System
(GPS) does not work well underwater [4]. Furthermore, three-
dimensional localization becomes even more challenging (e.g.,
being in range of a sufficient number of anchor nodes) due to
the economically-driven sparseness of USN deployments [5].
These properties make the underwater localization a non-trivial
task for which relatively very few options are available.

Our research is motivated by the following observations: (1)
underwater sensors typically have depth information available

through various techniques [6]; (2) it is not always feasible
to deploy anchor nodes at the sea floor, especially for deep
ocean environments; and (3) localization in terrestrial sensor
networks has been extensively studied and many elegant ideas
have been proposed. We seek to determine whether or not
a localization framework for underwater sensor networks can
be designed such that by employing sensor depth information,
only anchor nodes on the sea surface (a horizontal plane) are
required and existing 2D localization approaches can be easily
adopted.

In this paper, we formally identify the conditions that make
it possible to transform 3D underwater localization to 2D. In
particular, we prove that each node preserves its localizability
in the plane on which it is projected if the projection is non-
degenerative. Under this condition, a node is localizable in
the projection plane if and only if it is localizable in the
original 3D underwater network. We then prove that a node can
be localized by a geometric k-lateration localization method
if and only if it can be localized by another k-lateration
localization method.

We also design and extensively analyze a purely distributed
underwater sensor positioning framework termed USP that
employs our provably effective projection technique. The
geometric k-lateration localization equivalence guarantees that
USP preserves the capabilities of 2D localization methods and
improves localization capabilities over existing 3D techniques.
USP has low storage and computation requirements, incurs
predictable and balanced communication overhead, and is
robust to environment-induced errors.

The remaining portion of this paper is organized as follows.
Section II provides a brief overview of related research. In
Section III, we conduct a network localizability study that
forms the foundation of our research. A detailed elaboration
of the design of USP appears in Section IV, and an extensive
analysis of USP’s performance is provided in Section V. We
conclude in Section VI with a discussion of future research
directions.

II. RELATED WORK

In this section, we briefly overview localization techniques
proposed for USNs. For a more detailed literature survey, we
refer the interested readers to [3], and the references therein.
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Motivated by terrestrial GPS, “underwater GPS” schemes
such as GIB (GPS Intelligent Buoys) [7] and PARADIGM [8]
have been proposed. While GIB relies on a centralized server
to compute location information for sensors, the autonomous
underwater vehicles in PARADIGM are able to compute their
locations on-board.

Additionally, Hahn et al. [9] propose a ping-pong style
scheme to measure the round-trip delay for range estimation.
This scheme requires a sensor to interrogate multiple sur-
face buoys, an action that contributes to network throughput
degradation because localization information and application
communication share the same underwater channel. This con-
trasts with the distributed nature of USP, and its efficient and
balanced communication overhead.

A silent positioning scheme is proposed in [1] where sensors
discover their locations by passively listening to beacon mes-
sages. Despite providing receiver privacy, the assumption that
four anchor nodes are able to cover the entire area of interest
may not always hold. In USP, three dimensional localization
is provided without the existence of a forth beacon node on
the sea floor.

An area-based range-free underwater positioning scheme
termed ALS [10] relies on anchor nodes that adjust power
levels to partition a two-dimensional region into subareas, with
each anchor node having its own non-overlapping partition. A
sensor receives its position estimate from a central server after
providing all of the areas (one for each anchor node) that it
resides in. On the other hand, USP is a 3D localization scheme
with finer position granularity than ALS (i.e., it computes the
position of a node within a coordinate system as opposed to
a position within a subarea).

When there is no direct communication between anchor
nodes and sensors, network connectivity can be exploited for
range estimation. In [11], three localization schemes (DV-hop,
DV-distance, and Euclidean) based on network connectivity
are proposed. Although Euclidean is shown to perform the
best in anisotropic topologies, there is an expense of larger
computation and communication overheads. As an extension
to the Euclidean method, Zhou et al. [12] provide support
for 3D USNs. This method relies on a relatively larger
number of anchor nodes, which results in a higher deployment
cost. Zhang et al. [13] proposes UR-PLACE, a protocol
for underwater robot self-positioning that employs beacon
flooding. Both the extensive local communication in [12] and
the global flooding in UR-PLACE are bandwidth intensive and
unavoidably degrade the throughput in USNs.

USP is a purely distributed localization framework that
employs a provably effective projection technique, and can
work with any ranging method. Additionally, it is especially
tailored to the sparse deployments of USNs, and requires as
few as three beacon nodes to bootstrap the scheme.

Before elaborating the design of USP, we study the issue of
network localizability and develop the theoretical foundation
on which USP is built.

III. NETWORK LOCALIZABILITY STUDY

Since it may not be practical to place anchors on the
sea floor in 3D USNs, they are usually deployed on the
surface as buoys. However, a 3D position cannot be resolved
if all of the reference nodes, no matter how many exist,
reside on a single plane. What we need is a method to
differentiate the real position of a sensor from the position
of its image relative to the surface place. This problem may
be solved if we employ the depth information that is typically
available to underwater sensors. Specifically, given the depth
of underwater sensors, we can map the positions of the anchor
nodes to the plane containing the to-be-localized node. This
mapping effectively transforms the problem of 3D underwater
localization into a 2D positioning problem such that many of
the elegant localization techniques for 2D terrestrial sensor
networks become applicable.

In this section, we investigate whether or not a non-
degenerative projection preserves node localizability. We
prove that a node is localizable in the projection plane if
and only if it is localizable in the original 3D network. We
also prove that all of the geometric k-lateration localization
methods are equivalent, which guarantees that our proposed
USP preserves the capabilities of the 2D localization methods.

We begin with some basic definitions related to the network
localization problem.

A. Background Information

The network localization problem is to determine a unique
position for each node in a network given the positions of some
nodes (termed “beacons” or “anchors”) and the knowledge
of some inter-node distances, which can be the real physical
distances or some virtual distances such as the number of
hops. A node is localizable if its location can be uniquely
determined; otherwise, the node is unlocalizable. Although
a node is unlocalizable, it may still be possible to compute
several candidate positions for it. These types of nodes are
finitely localizable. In most of the localization methods, a
to-be-localized node localizes itself based on some reference
nodes. Here, the reference nodes are those that have obtained
their location information before the to-be-localized node. The
beacons are the initial reference nodes. Let G(V,E) be the
graph representing this network where V is the set of nodes
including the anchors and an edge (u, v) ∈ E if and only if
{u, v} ⊆ V and the distance between u and v is available.

Several well known geometric localization methods such as
bilateration, trilateration, and quadrilateration can be employed
to localize the to-be-localized nodes. These methods differ
in the number of reference nodes, denoted by k, a to-be-
localized node must “reach” before it can start to compute its
position. For simplicity, we use k-lateration to denote these
localization methods, where k = 2, 3, 4 refers to bilateration,
trilateration, and quadrilateration, respectively. The relation-
ship among quadrilateration, trilateration, and bilateration lo-
calization methods is illustrated in Fig. 1(a).

In general, there should exist at least d + 1 anchors to
uniquely localize a network in d-dimensional space. But as
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Bilateration

Trilateration

Quadrilateration

(a) (b)

Fig. 1. (a) The relationship between k-lateration localization methods.
(b) A wheel network where circles representing the anchors, and rectangles
representing the to-be-localized nodes.

pointed out in [14], given a 2D network as shown in Fig. 1(b),
bilateration localization methods can localize the network,
but trilateration or quadrilateration localization methods can
not. The reason is that the number of reference nodes for a
to-be-localized node to start the localization process is not
large enough for trilateration or quadrilateration, although the
network can be localized.

Although a bilateration localization method may not
uniquely localize a node at the beginning, it can perform
reductions as long as new reference nodes become available.
For example as shown in Fig. 2 (a), to-be-localized node C
has range information to two anchors A and B. Because it is
essential to be adjacent to at least three anchors for computing
a unique position in 2D, C can derive two candidate positions
C ′ and C ′′, with each satisfying the distance constraints
established by A and B. However, only one of them is
node C’s real position, thus making C a finitely localizable
node with candidate position set {C ′, C ′′}. A reduction is a
procedure that reduces the number of candidate positions. As
shown in Fig.2 (b), node C can remove C ′′ from its candidate
position set after the reference node D is introduced because
C ′′ does not satisfy the distance constraint imposed by D.

A

B
B

A

C' C'

C''

D

(a) (b)

Fig. 2. Node C has two candidate positions in (a). C becomes localizable
in (b) after reference node D is introduced.

Note that some nodes in the network can not be uniquely
localized, but can be finitely localized. The ability to localize
more nodes with a bilateration method does not come for free.
In fact, for 2D localization, the computational complexity of
a bilateration method is exponential [14], while trilateration is
polynomial in the number of vertices.

B. Localizability Preservation Study

In this subsection, we prove that a non-degenerative projec-
tion preserves the localizability of the network.

Definition 3.1: Given a plane F in 3D , a projection is a
function PF : R3 → R3, which projects a node v in the 3D
space to a node vF in the plane F , i.e. PF (v) = vF .
Note that PF is a Euclidean transformation.

Definition 3.2: Given a 3D graph G(V,E) and a plane
F , the projection graph GF (VF , EF ) is produced by the
projection PF , where VF = {vF |v ∈ V } and EF =
{(vF

i , vF
j )|(vi, vj) ∈ E, i �= j}.

Lemma 3.1: If PF is non-degenerative, then (vi, vj) ∈ E
if and only if (vF

i , vF
j ) ∈ EF , where i �= j.

Proof: PF is a bijective function when there is no
degeneration. Therefore the claim holds true according to
Def. 3.1 and Def. 3.2.

Definition 3.3: Given a plane F and a node v, the relative
distance DF

v represents the distance from v to F , i.e., DF
v =

v − vF . Note that DF
v is a vector.

Definition 3.4: Given a plane F , the 3D coordinate system
CF derived from F is called a relative projection coordinate
system.

Theorem 3.1: Assume the projection PF is non-
degenerative. Given a 3D graph G(V,E) and a plane
F where DF

v is known for ∀v ∈ V , then v is localizable in
G if and only if vF is localizable in GF .

Proof: Since PF is non-degenerative, it is bijective. For
∀v ∈ V , let (x0

v, y0
v , z0

v) be the coordinates of v in 3D, and
(xF

v , yF
v , zF

v ) be the coordinates of vF in the relative projection
coordinate system CF . Since PF is bijective, P−1

F exists and
it is bijective too. Therefore the Euclidean transformation
between the two coordinate systems is bijective. Thus the
mapping between (x0

v, y0
v , z0

v) and (xF
v , yF

v , zF
v ) is unique.

According to Lemma 3.1, PF preserves the connectivity of G.
Therefore v is localizable in G if and only if vF is localizable
in GF .

Corollary 3.1: If PF is bijective, then G(V,E) is uniquely
(finitely) localizable if and only if GF (VF , EF ) is uniquely
(finitely) localizable in the projection plane F .

Proof: Claims hold from Theorem 3.1.
Note that Theorem 3.1 and Corollary 3.1 indicate that a

non-degenerative projection preserves the localizability of a
network G. This observation motivates the design of our
distributed underwater sensor positioning (USP) framework in
the next section.

C. Localizability Equivalence Study

We have given an example that shows bilateration can
localize a larger set of nodes than trilateration. In general,
(k − 1)-lateration is always better in localizability than k-
lateration. We now investigate whether or not all the k-
lateration methods are equivalent in localizability. A positive
answer guarantees the generality of our proposed framework.

Intuitively, different k-lateration localization methods may
localize different sets of localizable nodes. This could be
caused by the fact that two k-lateration localization methods
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may differ in the way of using the initial reference nodes. In
addition, a centralized k-lateration method may localize more
number of nodes compared to its distributed/localized imple-
mentation. However, this intuition is not true for localizability.

We will next prove that a to-be-localized node can be
localized by one k-lateration localization method if and only if
it can be localized by another given the same initial reference
nodes. This means that all of the k-lateration based localization
methods are equivalent.

Let G(V,E) be a d-dimension graph where d > 1. Our
proof is based on the definitions that appear below.

Definition 3.5: A t-seed subgraph Gts(Vts, Ets) of G is
a graph induced by t vertices v1, v2,· · · , vt in G. In other
words, Gts(Vts, Ets) is a t-seed subgraph of G if Vts =
{v1, v2, · · · , vt} ⊆ V , and (vi, vj) ∈ Ets if and only if
(vi, vj) ∈ E, where i, j = 1, 2, · · · , t, and i �= j.

For a to-be-localized network, all the initial reference nodes
induce the t-seed subgraph, where t is the number of initial
reference nodes. Note that, t > d is necessary to uniquely
localize a network in d-dimensional space.

Definition 3.6: A k-lateration extension of a subgraph
G0(V0, E0) of G produces a new subgraph G1(V1, E1) of G
where G1 is an induced graph of V1 = V0 ∪ {v|v ∈ V \
V0,∃v1, v2, · · · , vk ∈ V0 , s.t. (v, vi) ∈ E for i = 1, 2, · · · , k
}.

Definition 3.7: Given a t-seed subgraph Gts of G, a k-
lateration extension subgraph Gm(Vm, Em), m = 1, 2, · · · ,
is produced by k-lateration extensions starting from G0 = Gts.

Next, we will prove the main property of the k-lateration
extension subgraph Gm(Vm, Em). We need the definition of
k-credit node, which is introduced in [15].

Definition 3.8: Given a node T , if a node S has k vertex-
disjoint paths to T , S is called a k-credit node.

In [15], we proved the following theorem.
Theorem 3.2: A set of k vertex-disjoint paths from S to T

can be found for a (k − 1)-credit node S if there exists a k-
credit node P and a path SP between S and P such that SP

vertex-disjoints all the known (k − 1) paths from S to T and
the k paths from P to T .

Lemma 3.2: A node v is a vertex in a k-lateration extension
subgraph Vm, m = 1, 2, · · · , if and only if v has at least k
vertex disjoint paths to k distinct nodes in Vts, and each of
the nodes in v’s paths also has at least k vertex disjoint paths
to k distinct nodes in Vts.

Proof: If v ∈ V1, then the claim holds trivially according
to Definition 3.6. Now we assume that when v ∈ Vj the claim
is true for ∀j = 1, 2, · · · , i.

Now consider the case when v ∈ Vi+1 \ Vi. According to
the definition of k-lateration extension, there exist at least k
different nodes v1, v2, · · · , vj , · · · , vk ∈ Vi, such that these k
nodes joint v as shown in Fig 3(a). Based on the assumption,
each of these k nodes has at least k vertex disjoint paths to k
distinct nodes that are in Vts, and all of the nodes in its paths
also have at least k vertex disjoint paths to k vertex distinct
nodes that are in Vts.

Vts

v
.
.
.

v1

v2

vj
vk

.

.

.

.

.

.

(a)

Vts

v
.
.
.

v1

v2

vj
vk

.

.

.

.

.

.

T

(b)

Vts

v

v1

T

(c)

Vts

v
.
.
.

v1

v2
T

(d)

Vts

.

.

.

v
.
.
.

v1

v2

vj

T vj-1

ST1ST2

STj-1

PT1
.
.
.

PTj

(e)

Vts

.

.

.

v
.
.
.

v1

v2

vk-1

vk

T

ST1
ST2

STk-1

PT1

PTk

.

.

.

(f)

Fig. 3. The progress of constructing k vertex disjoint paths.

It is clear that the path/edge between v and any vj , 1 ≤ j ≤
k, vertex disjoints all the other already-known paths according
to the Def. 3.7. In the following, we will construct k vertex
disjunct paths from v to k distinct nodes in Vts.

We assume that there is a virtual sink node T connecting
all the initial reference nodes as shown in the Fig 3(b). We
will construct k vertex-disjoint paths from v to T step by step
as following.

• Pick one of v1’s paths, which does not pass any of v2,
· · · , vj , · · · , vk. There must exist such a path because
it is impossible for k vertex-disjoint paths sharing k − 1
nodes for v1. The concatenation of this path and the edge
between v and v1 forms the first path for v, as shown in
Fig. 3(c). And this path does not pass any of v2, · · · , vj ,
· · · , vk.

• Pick two of v2’s paths, which do not pass any of
v3, · · · , vj , · · · , vk, as shown in Fig. 3(d). According
to Theorem 3.2, there exist two vertex-disjoint paths
between v and T .

• · · ·
• Pick j of vj’s paths, which do not pass any of vj+1, · · · ,

vk, as shown in Fig. 3(e). Based on Theorem 3.2, there
exist j vertex-disjoint paths between v and T .

• · · ·
• Pick k paths from vk’s paths, as shown in Fig. 3(f).

Based on Theorem 3.2, there exist k vertex-disjoint paths
between v and T .

Therefore when v ∈ Vi+1, the claim is true. The opposite
direction is true according to Def. 3.7.

Definition 3.9: Given a t-seed subgraph Gts of G, a maxi-
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mum k-lateration extension subgraph GM (VM , EM ) of G is
a k-lateration extension subgraph such that for ∀v ∈ V \ VM ,
|N(v) ∩ VM | < k, where N(v) = {vi|(v, vi) ∈ E}, is the
neighbor set of v in G.

Note that a maximum k-lateration extension graph is ob-
tained when the k-lateration localization method terminates.

In the following we prove that given a t-seed subgraph
Gts of G, the maximum k-lateration extension subgraphs
GM (VM , EM ) computed from all the k-lateration localization
methods are the same.

Theorem 3.3: Let GM (VM , EM ) be any maximum k-
lateration extension graph of the G(V,E), which is derived
from the same t-seed subgraph Gts, then the VM is unique.

Proof: Assume there are two VM ’s, VM1 and VM2 ,
which means that G has two different maximum k-lateration
extension graphs from Gts. For ∀v ∈ VM1 , it can be concluded
that v ∈ VM2 according to Lemma 3.2. Therefore VM1 ⊆ VM2 .
Similarly, it can be concluded that VM2 ⊆ VM1 . Thus,
VM1 = VM2 .

Corollary 3.2: All the k-lateration localization methods are
equivalent, given the same initial reference set.

Proof: Nodes that are localized by a k-lateration based
localization method are the elements of VM . Since VM is
unique, the proposition is true.

Therefore, we can conclude that all the k-lateration local-
ization methods are equivalent given the same initial reference
node set.

IV. USP DESIGN

In this section, we present a distributed positioning frame-
work for three dimensional USNs termed USP. USP is based
on a novel projection-based localization technique that enables
traditional 2D localization methods to be applicable to 3D
environments.

The framework is composed of two main phases: an offline
pre-distribution phase and a distributed localization phase. The
first phase consists of nodes being pre-loaded with initial
configuration information (e.g., the amount of time allocated
to each iteration), while the latter iteratively executes the
distributed localization technique. Before presenting USP, we
discuss its network model and underlying assumptions, and
elucidate the projection technique that it employs.

A. Network Model and Assumptions

We consider three dimensional USNs where relatively sta-
tionary nodes [5] are randomly distributed throughout an
oceanic medium, with at least three anchor nodes being in-
cluded in the deployment. To simplify the process of endowing
these nodes with their positions, they are placed on the surface
as GPS-enabled bouys.

Practical issues such as economics suggest that the sen-
sors will be sparsely deployed [5]. Additionally, as pointed
out in [6], the propagation characteristics of radio waves in
water dictate that sensors will employ acoustic waves for
communication. Therefore, we require sensors to be capable
of using ToA to measure distances between themselves [3]. A

simple ToA-based ranging method that does not rely on time
synchronization is proposed in [16]

Each sensor also employs its depth information. This in-
formation is typically computed with a pressure sensor and
knowledge of the pressure-depth relationship that is associated
with the medium of interest. Other techniques for obtaining
this information include having sensors adjust self-regulated
wires attached to a seabed anchor [6].

B. Projection Technique

Traditional 3D underwater localization techniques (e.g.,
silent positioning [1]) require the existence of at least 4 non-
coplanar anchors or other previously localized nodes termed
“reference nodes” to be within communication range of the
to-be-localized node. However, in USP, this requirement is
obviated through the use of sensor depth information and
a location projection technique that maps the positions of
neighboring reference nodes from one plane to another. A
simple projection is to map the referenc nodes to the horizontal
plane containing the to-be-localized node.

xxx
xxx
xxx

Reference Node A

Projection Plane

Reference Node C

Reference Node B

A'
B'

C'Node X
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

Fig. 4. The projection of three reference nodes A, B, and C to a plane
containing the to-be-localized node X . The projected nodes are represented
as A′, B′, and C′, and their positions are used to localize X .

For example, consider an underwater sensor X that needs
to compute its position within a 3D oceanic deployment
area as shown in Fig. 4. In this scenario, node X is within
communication range of three reference nodes A, B, and C
located at known positions (xA, yA, zA), (xB , yB , zB), and
(xC , yC , zC), respectively.

Given X’s measure of its depth as zX , and the successfully
received broadcasts of the locations of A, B, and C, node
X can compute a projection of each node onto its plane
PX (i.e., the horizontal plane containing node X). Specif-
ically, node A is projected onto PX as node A′ located
at position (xA, yA, zX), and nodes B and C are projected
analogously as nodes B′ and C ′, with the first located at
position (xB , yB , zX) and the second at position (xC , yC , zX).
Note that this projection is non-degenerative if and only if no
two nodes have the same x and y coordinates.

If the projection is non-generative, the task of localizing
node X in a three-dimensional space has been reduced to
localizing a node in a two-dimensional space. Therefore, after
three reference nodes A′, B′, and C ′ have been projected,
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elegant localization methods such as trilateration may be
employed to localize node X .

Otherwise, if the projection is not non-degenerative, the to-
be-localized node can easily detect and respond. Since the
positions of A′, B′, and C ′ are known, the to-be-localized
node can simply check to see if any of the two reference nodes
have the same position in the projection plane. Similarly, if a
line computed between a pair of reference nodes is equal to
a line computed between a different pair of reference nodes,
a degenerative projection is detected. In either case, the to-
be-localized node simply selects a different (not necessarily
disjoint) set of reference nodes to project when available. Note
that the sparse deployments of USNs make it almost unlikely
that a degenerative projection will occur.

We also note that the post-projection distances used by
the chosen localization technique are not the initial distances
measured from the ranging method that is used. For example,
consider the to-be-localized node X and the reference node
B as shown in Fig. 4. The position of B is known by X
to be (xB , yB , zB) because B is a reference node for X .
Additionally, X has the ability to measure its depth as zX .
Therefore, if the distance between X and B that is calculated
by ranging is dr, the distance between X and B that is used
by the localization technique, dr

′, can be computed as:

dr
′ =

√
dr

2 − (zX − zB)2. (1)

C. Pre-Distribution

Prior to deployment, each sensor is preloaded with a unique
ID. Each node also maintains candidate position sets PS and
NS, which will store the position information of themselves
and their neighbors, respectively. Additionally, three nodes
are selected at random to be anchors. These nodes bootstrap
the localization procedure by announcing their positions once
deployed.

System parameters M , ∆B , ∆C , and ∆S , as listed in Table
I, are also initialized during this phase. While ∆B and ∆C

support fundamental USP operations, ∆S helps mitigate the
effect that error sources such as receiver system delay and
underwater multipath fading have on the performance of USP.
Note that these parameters can be estimated before deployment
through analysis or simulation (as shown in Section V).
Therefore, the total time for an iteration i, with 1 ≤ i ≤ M ,

M Number of iterations USP will be executed
∆B Time sending/receiving broadcasts per iteration.
∆C Time updating a node’s PS per iteration.
∆S Per iteration silence period.

TABLE I
PRELOADED SYSTEM PARAMETERS.

can be expressed using Eq. (2).

∆Ti
= ∆Bi

+ ∆Ci
+ ∆Si

(2)

This definition allows for variance among the minimum
lengths (i.e., the minimum amount of time to compute a given

iteration) of each ∆Ti
. An example of its usefulness can be

seen in that while broadcasts are made during each iteration,
the number of broadcasts made differs from iteration to
iteration. However, for succinctness of notations, we consider
each iteration to take the same amount of time, which is
denoted as ∆T .

D. Distributed Localization

USP is executed for a maximum number of iterations M
by each of the deployed nodes in a distributed manner. Its
psuedocode appears below.

Algorithm USP

1: during(∆B)
2: if new pos info then
3: broacast(pos info)
4: new pos info← false
5: end if
6: if receive(neighbor pos info) then
7: update(NS, neighbor pos info)
8: recv info← true
9: end if

10:

11: during(∆C)
12: if |PS| = 0 then
13: if |NS| ≥ 2 and recv info is true then
14: new pos← project location(NS)
15: update(PS, new pos)
16: new pos info← true
17: end if
18: end if
19: if |PS| > 1 and recv info is true then
20: PS′ ← reduction(PS,NS)
21: if |PS \ PS′| > 0 then
22: PS ← PS′

23: new pos info← true
24: end if
25: end if
26: recv info← false
27:

28: during(∆S)
29: sleep(∆S)

As shown in Eq. (2), the total time for each iteration is
composed of three main time periods. During ∆B , the first
time period, each sensor performs a local broadcast of any new
position information that it has (line 3, USP). This information
is available when a node is just deployed (when a node is an
anchor) or when a node’s location information is updated. A
sensor also updates the position information of any neighbor
from which it receives position information broadcasts (line
7, USP) during this period.

Next, the second time period ∆C has sensors compute their
position information (using bilateration operations) when new
position information broadcast is received. If a sensor has no
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previous position information (line 12, USP), it attempts to
compute its position via the projection technique (described in
Subsection IV-B) with the position information of its neighbors
(line 14, USP). Alternatively, if a sensor already has position
information, it attempts to reduce its set of candidate positions
(line 20, USP).

Lastly, all sensors sleep for a period of ∆S . After comple-
tion of this step (line 29, USP), an iteration of total length ∆T

has finished, and the subsequent iteration of USP begins.

V. EVALUATION

In this section, we provide a comprehensive analysis of the
performance of USP through extensive MATLAB simulations.
Relevant simulation parameters are outlined below, and the
reported results reflect properties that include localization
efficiency, storage and computation overheads, energy con-
sumption, and robustness to errors.

• The network consists of 1000 nodes (including 3 anchor
nodes) randomly deployed in a 3-dimensional cubic re-
gion with a size of 100× 100× 100 units.

• Sensing range varies to control the density and connectiv-
ity of the network. Since underwater sensor networks are
sparse, the highest node degree considered in this paper
is approximately 10.

• The outcomes of all simulations are averaged over 100
network instances.

A. Localization Capability

The localization capability of USP is evaluated by analyzing
both its ability to localize nodes and the number of iterations
required to localize those nodes. Recall that in Section III-C,
USP is formally shown to be able to localize all nodes that
are capable of being localized by any bilateration method (e.g.,
Sweeps [14]), thereby transforming the three-dimensional lo-
calization problem into its two-dimensional counterpart.

This transformation allows USP to possess significantly
improved localization capabilities over traditional three-
dimensional localization techniques such as quadrilateration.
More specifically, the ability of nodes to compute location
information (i.e., a unique or ambiguous position using a
trilateration or bilateration method, respectively) with as few
of two reference nodes in USP as opposed to the four refer-
ence nodes required for quadrilateration provides a significant
performance increase.

Indeed, as illustrated in Fig. 5(a), the ratio of nodes localized
by USP reaches about 47% while that of quadrilateration is
near 15% when the average node degree is 10. The relative
performance increase is even higher for smaller node degrees.
This is an important characteristic given the sparse nature of
USN deployments [5]. As average node degree increases, a
network is more easily localized because a greater percentage
of nodes can be covered by each anchor node.

Also reflected in Fig. 5(a) is the number of nodes that
USP finitely localizes. This value represents an increase in
the percentage of localizable nodes by about 5% of the overall
network size, and is a nice additional feature of USP because
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Fig. 5. (a) The ratio of nodes localized by USP in comparison with that of
quadrilateration. The ratio of nodes finitely localized by USP is also shown.
All computations are made with respect to average node degree. (b) The
number of iterations required by USP to localize a network with respect to
the average node degree.

for many applications (e.g., target tracking) partial location
information for a known set of nodes is preferable to incorrect
or missing information for an unknown set of nodes [17].

Note that these aforementioned results are obtained when
including only three anchor nodes in the initial deployment.
As can be expected, the number of localized nodes increases
with the number of anchor nodes. This can be intuitively
explained by the greater likelihood of having neighbors with
known position information.

Complementing USP’s ability to increase the number of
localized nodes is the number of iterations that are required
to actually localize the network. As indicted by Fig. 5(b), the
distributed nature of USP is suited particularly well for sparse
networks; only about 20 iterations are needed for USNs with
an average node degree that is ≤ 6.

Additionally, a reasonable maximum number of iterations
of about 45 occurs when the average node degree is between
7 and 8. This can be expected as around this level of connec-
tivity many small disconnected network clusters begin to be
assimilated into a larger single component. Consequently, the
number of localizable nodes increases faster than the number
of nodes that can be localized per iteration at the beginning
of the simulation.

B. Storage and Computation Overhead

The storage overhead imposed by USP is also relevant as
a node’s candidate position set may store multiple ambiguous
positions prior to obtaining a unique position via, for example,
some reduction operation. As indicated by Fig. 6(a), the
average number of candidate positions by each node is about
16 regardless of the average node degree.

Note that this value is simultaneously a metric for the
computation overhead associated with USP. Specifically, the
average size of a node’s candidate position set represents
the average number of reduction operations that should be
performed by a node in order to uniquely localize itself.

The maximum size of a node’s candidate position set is
also plotted in Fig. 6(a). Based on the significant difference
between this curve and the mean curve, we conclude that
although the possibility of greater storage and computation
overheads exists, the proposed algorithm does not require
much storage space or reduction of very large candidate
position sets on average.
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Fig. 6. (a) The average size of a candidate position set with respect to the
average node degree. The maximum size of a candidate position set is plotted
as well. These curves also reflect the computation overhead associated with
USP. (b) The ratio of the number of localized nodes to the overall network size
with respect to different candidate position size restrictions for three different
average node degrees.

Despite the low average storage and computation overheads
of USP, it may be argued that the occasional maximum
candidate position set size creates too much of a resource
burden for each underwater sensor. Therefore, a way to further
relax this constraint is desirable. One intuitive solution is to
limit the allocated memory budget to a more suitable amount.
However, the effect of this storage restriction has on the
localization capabilities must be investigated. Insight into this
relationship is provided by Fig. 6(b).

The curves in Fig. 6(b) correspond to average node degrees
of 3.7, 7.8, and 9.8, and each begins to flatten out at a storage
limit of about 16 candidate positions. This value corresponds
nicely with the previously discussed average candidate posi-
tion set size. Furthermore, the relatively constant percentage of
localized nodes after this size restriction indicates that USP has
the ability to localize most localizable nodes with reasonable
storage and computation overheads.

C. Energy Consumption

The energy supply and available bandwidth are two closely
related and severely limited resources in USNs [6], with
communication decreasing both the available battery power
and bandwidth. Therefore, we evaluate USP in terms of its
two most energy intensive activities: receiving messages and
broadcasting messages.

Recall that in USP each node receives messages (or “lis-
tens”) for position updates until it has a unique location or the
algorithm stops after the maximum number of iterations M
have been completed. The number of nodes listening during
each iteration of USP is illustrated in Fig. 7 with respect to
the average node degree.

The graph shows that the number of nodes listening de-
creases as the number of iterations increases. This behavior is
attributed to the number of localized nodes (hence no longer
listening) increasing with the number of iterations. Also shown
in Fig. 7 is the effect that average node degree has on the
number of listening nodes. We observe that the number of
nodes listening is quite balanced with respect to node degree.
For example, the number of listening nodes steadily increases
until an average node degree of about 9 is reached, at which
point the value begins to steadily decrease.
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Fig. 7. The number of nodes listening during each iteration of USP with
respect to the average node degree.

Of particular importance to the energy consumption in USP
is the number of nodes broadcasting messages (or “active
nodes”) per iteration. Indeed, a typical acoustic modem uses
about 50 J/s when transmitting, while only 0.2 J/s when
receiving [5]. As shown in Fig. 8, USP has a relatively small
and predictable number of active nodes during each iteration.
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Fig. 8. The number of active nodes during each iteration as it relates to the
average node degree.

Specifically, for sparse node deployments, the number of
active nodes steadily increases to about 25 at iteration number
9, and then gradually decreases until about iteration number
20 when there are no active nodes remaining. The symmetry
of this curve can be attributed to the relatively large number
of nodes that have updated position information, and hence
messages to broadcast, near the midpoint of the duration of
USP.

The number of these nodes then begins to decrease as the
nodes belonging to each node’s neighborhood begin to become
localized. Additionally, because denser deployment results in
more nodes receiving updated position information with each
broadcast, we observe that the number of active nodes steadily
increases with respect to node degree.

Contrasting with the number of nodes active per iteration,
we illustrate the average number of iterations that each node
is active with respect to node degree in Fig. 9(a). The results
indicate that the purely distributed nature of USP enables to
localize themselves quickly, with an average of about three
position update messages sent by each node. This also suggests
that USP makes very efficient use of the limited bandwidth
available in USNs.
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Fig. 9. (a) The average number of iterations that each node is active with
respect to the average node degree. (b) The cumulative localization error with
respect to ranging error for different average node degrees.

D. Robustness

The underwater environments present unique challenges to
accurate localization. Indeed, variations in water temperature,
salinity, and overall clarity adversely affect the accuracy of
ranging methods. The combined influence that the time of
day, weather, and depth have on these variations require any
effective localization methods to tolerate effectively random
ranging errors.

We therefore evaluate the ability of USP to localize sensors
in the presence of noisy distance measurements. Specially, all
range measurements in USP include different Gaussian noise
at different average node degrees. The noise is zero-mean with
a standard deviations of 2%, 4%, 6%, 8%, 10%, 12%, 14%,
and 16% of the range applied to all distance measurements.
As indicated by Fig. 9(b), the location error increases with the
node degree. It is because the number of iterations reaches the
top when the node degree is around 9 as shown in Fig 5(b), and
more iterations introduces more accumulative error. Therefore,
we can also conclude that Fig. 9(b) shows the worst cases with
USP.

VI. SUMMARY AND FUTURE WORK

In this paper, we have studied the localization problem
in 3D underwater acoustic sensor networks. To employ the
depth information available to an underwater sensor, projection
is introduced to transform the 3D localization system to
2D such that popular terrestrial positioning techniques can
be easily applied. We prove that a non-degenerative projec-
tion preserves the network localizability and all of the k-
lateration localization methods are equivalent. Then a novel
distributed localization framework termed USP for sparse 3D
sensor networks is proposed. USP employs a distributed non-
degenerative projection technique where reference nodes are
projected to the plane that contains the to-be-localized sensor.
Through extensive simulation, we show that USP is able to i)
improve localization capabilities over existing 3D methods; ii)
maintain consistently low storage overhead and computation
overhead; iii) display predictable and balanced communication
overhead; iv) perform localization that is robust to underwater
acoustic channel errors.

Additionally, the design of USP is general enough to support
relative sensor positioning. We will therefore explore the
feasibility of post-deployment endowment of anchor nodes
with position information so that a transformation of the

relative coordinate system may be computed. We also plan to
incorporate a network partitioning and joining strategy so as
to reduce the total number of iterations and the accumulative
errors.
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